NQR of 35Cl, 127I, and 121Sb in I₃Cl₂SbCl₆ and ICl₂SbCl₆

Mitsuo Mishima* and Tsutomu Okuda[†]
Department of Chemistry, Shimane Medical University, Izumo 693

†Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730

(Received September 7, 1987)

NQR spectra due to 35 Cl, 127 I, and 121 Sb in I_{3} Cl $_{2}$ SbCl $_{6}$ and ICl $_{2}$ SbCl $_{6}$ have been observed in the temperature range 77 K to melting point. The Zeeman effect on the single crystals of these complexes has been examined. In I_{3} Cl $_{2}$ SbCl $_{6}$ the η -values for the I atoms contributing to the higher and the lower NQR frequencies are 0.73 to 0.09, respectively, whereas in ICl $_{2}$ SbCl $_{6}$ the η -value for the I atom is 0.15. In these complexes the 35 Cl NQR lines which yield large η -values (0.42 to 0.56) are assigned to the bridging Cl atoms. The η -values for the other Cl atoms, except the Cl atoms in the ICl $_{2}$ + ion which have η -values of 0.13 to 0.15, are negligibly small. The Sb atoms in both complexes have considerably large η -values (0.39). The orbital populations have been calculated from the NQR parameters. The bonding in the cations is explained on the basis of an approximation using only p orbitals of the I atom.

The NQR investigations on a number of polyhalogen anions shed light on the charge distribution and the interaction between these anions and the surrounding cations. 1-8) Above all, the bonding in trihalides was satisfactorily explained in terms of a three-center four-electron (3c-4e) bond or a resonance hybrid X-Y $X^- \leftarrow \to X^-$ Y-X. On the other hand, polyhalogen cations are less stable,9 and the crystal structures of a few compounds were determined by X-ray analysis. The NQR data on the polyhalogen cations were reported for the first time by Evans and Lo,10) who assigned the 35Cl resonance lines in ICl₂AlCl₄ roughly to the ICl₂+ and the AlCl₄- ions. Merryman et al.9,11) observed the resonances of 35Cl and 127I in I2ClSbCl6, I2ClAlCl4, I3AlCl4, and I5AlCl4, and estimated atomic charges and bond populations. From the known crystal structures of polyhalogen derivatives, 12-16) it is inferred that bridging halogen atoms construct infinite chains of cations and anions. It is therefore important to elucidate the bond character in detail.

Birchall and Myers¹⁴⁾ reported the crystal structure of I₃Cl₂SbCl₆ and threw doubt on the presence of I₂ClSbCl₆ on the basis of the unit cell parameters and the Raman spectrum. They followed the method of Shamir and Lustig¹⁷⁾ in an attempt to prepare I₂ClSbCl₆. It is of interest to know whether this complex is present or not. Although ICl₂SbCl₆ is one of the first compounds in which the presence of the polyhalogen cation was well established by crystallographic study,¹²⁾ this complex has not been investigated by NQR yet, so far as we know.

In this paper we describe the results of the NQR Zeeman investigations on single crystals of the complexes I₃Cl₂SbCl₆ and ICl₂SbCl₆. The choice of the SbCl₅-complexes was favored since the resonances of ³⁵Cl, ¹²⁷I, and ¹²¹Sb could be observed in the course of the experiment. Furthermore a comparison of the Zeeman data with the structural ones was considered to yield useful information on the assignment of the NQR lines and charge distribution.

Experimental

Complexes of I₃Cl₂SbCl₆ and ICl₂SbCl₆, were prepared in the manner described in the literatures. ^{14,18)} These were identified by the melting points and the halogen contents. The procedure of Merryman and Corbett¹¹⁾ was followed in an attempt to prepare I₂ClSbCl₆. The NQR spectra of this complex were essentially, except for some parts, identical with those in the literature. ¹¹⁾ Single crystals were grown by Bridgman's method.

A superregenerative spectrometer of Dean's type and a superregenerative parallel transmission line spectrometer were used for detecting the NQR lines. The absorption lines were observed on an oscilloscope. The resonance frequencies were determined with a frequency counter, TR-4142G, of Takeda Riken Co. The Zeeman effect was measured by means of the zero-splitting cone method. The Zeeman field was supplied by means of a Helmholtz coil. Temperature was measured by the use of a copperconstantan thermocouple.

Results

The NQR frequencies for ³⁵Cl, ¹²¹Sb, and ¹²⁷I in I₃Cl₂SbCl₆ and ICl₂SbCl₆ are listed in Tables 1 and 2, respectively. Figures 1 and 2 show the temperature dependence of the resonance frequencies for ³⁵Cl

Table 1. ³⁵Cl, ¹²⁷I, and ¹²¹Sb NQR Parameters in I₃Cl₂SbCl₆ at Room Temperature

Atom	Frequer	ncy/MHz	$\eta/\%^{a)}$	$e^2 Qqh^{-1}/\mathrm{MHz^a}$	
	77 K	297 K	. 17 70 .	c 24" - WILL	
Cl ₁	21.007	20.784	42.6	40.361	
Cl_2	25.175	24.839	1.9	49.675	
Cl_3	26.135	25.702	3.2	51.395	
Cl ₄	38.620	38.293	4.9	76.555	
$I_1 \nu_1$	432.065	429.13	8.8	2837.0	
$I_2 \nu_1$	529.30	522.63	73.4	2373.1	
Sb ν_1	22.688	21.054	38.0	199.40	
ν_2	36.966	35.730	$(38.0)^{b)}$	122.49	

a) These values correspond to 297 K. b) Obtained from the frequency ratio of ν_2/ν_1 .

Table 2. 35Cl, 127I, and 121Sb NQR Parameters in ICl₂SbCl₆ at 233 K

Atom	Frequency/MHz			$\eta/\%$	200 a h=1 /MII-	
Atom	77 K	233 K	298 K	η/ 70	e^2Qqh^{-1}/MHz	
Cl ₁	19.363	19.198	19.114	56.7	36.490	
Cl_2	20.522	20.447		48.3	39.409	
Cl_3	25.476	25.444	25.127	5.2	50.420	
Cl ₄	26.059	25.793	25.66b)	3.6	50.555	
Cl ₅	27.145	26.832	25.67 ^{b)}	4.5	53.806	
Cl ₆	27.159	26.912	26.78 ^{b)}	2.9	53.817	
$Cl_7^{a)}$	38.654	38.405	38.270	15.4	76.261	
$Cl_{8}^{a)}$	40.053	39.829	39.691	13.8	79.155	
$I^{a)}$ ν_1	462.569	457.52	454.70	14.9	2962.2	
$Sb^{a)} \nu_1$	17.896	17.870	17.857	39.5	102.91	
$ u_2$	30.954	30.337	29.975	(39.5)°)		

a) The values of η and e^2Qqh^{-1} for these atoms correspond to 298 K. b) Very weak and broad. c) Obtained from the frequency ratio of ν_2/ν_1 .

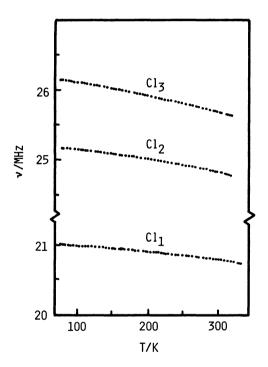


Fig. 1. Temperature dependence of ³⁵Cl NQR frequencies in I₃Cl₂SbCl₆.

bonded to the Sb atom in I₃Cl₂SbCl₆ and ICl₂SbCl₆, respectively, in the temperature range from 77 K to the melting points. In I₃Cl₂SbCl₆, the NQR lines of the Cl₂ and Cl₃ atoms faded out at around 320 K, whereas the resonance of the Cl₁ atom could be detected up to the melting point. In ICl₂SbCl₆, similarly, the resonance lines of the Cl₁ and Cl₃ atoms could be detected up to near 350 K, and those of the other Cl atoms faded out in the range from 280 to 300 K. This suggests that the Sb-Cl₁ bond in I₃Cl₂SbCl₆ and the Sb-Cl₁ and Sb-Cl₃ bonds in ICl₂SbCl₆ are nearly parallel to the reorientational axis of the SbCl₆ group. ^{19,20)} The other lines due to ³⁵Cl, ¹²⁷I, and ¹²¹Sb in these complexes were observed up to their melting

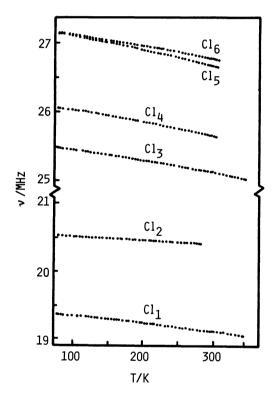


Fig. 2. Temperature dependence of ³⁵Cl NQR frequencies in ICl₂SbCl₆.

points.

The Zeeman effect on 35 Cl, 123 Sb, and 127 I in I_3 Cl₂SbCl₆ was examined at room temperature. The zero-splitting loci are shown in Fig. 3. A single pattern was obtained for each resonance line. This is in agreement with the crystal structure which belongs to the space group PI.¹⁴⁾ The calculated asymmetry parameters (η) are listed in Table 1 along with the coupling constants (e^2Qqh^{-1}). The Cl₁, I₂, and Sb atoms are characterized by their large η -values. The assignment of the NQR lines on the Cl atoms is based on a comparison of orientation of the efg axis at the

resonant nucleus with the corresponding bond directions, as seen in Table 3. The I₁ and I₂ atoms cannot be unequivocally assigned because of the parallelism of their efg axes and because of

Table 3. Angles between efg Axes and Bond Angles in I₃Cl₂SbCl₆

Bond	Cl ₁ -Sb	Cl ₂ -Sb	Cl ₃ -Sb	Cl ₄ -I ₂
Cl ₂ -Sb	87.25°			
	(89.56)			
Cl ₃ -Sb	85.80	89.63		
	(89.71)	(89.97)		
Cl_4-I_1	63.95	51.52	46.26	
	[69.3] ^{b)}	[51.6]	[46.0]	
I ₁ z-axis	93.51	140.55	50.53	90.11
x-axis	65.0	52.5	44.7	1.7
I ₂ z-axis	63.40	51.51	46.6	0.58
x-axis	94.1	139.2	49.0	90.2
I_1-I_2	[92.6]	[141.9]	[52.2]	(92.62)

a) The value in parentheses is the corresponding bond angle. b) The value in brackets was calculated from the atomic positions (Ref. 14).

unreliability in the intensity ratio of the resonance lines. The assignment of these was decided by considering the relationship between the orientation of the efg axes and the charge distribution, as described below. The efg axes at the atoms Cl₂, Cl₃, and Cl₄ coincide in direction with the bond axes. The

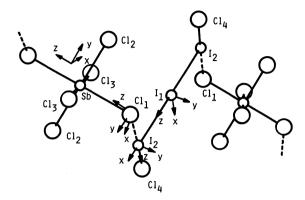


Fig. 4. Molecular shape of I₃Cl₂SbCl₆.

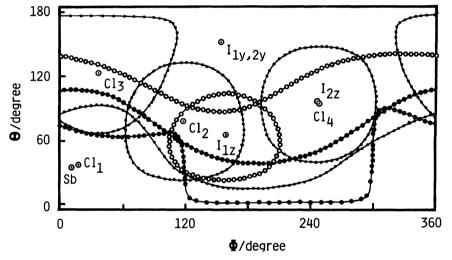


Fig. 3. Zero-splitting loci of ³⁵Cl, ¹²⁷I, and ¹²¹Sb (ν₁, ν₂) Zeeman lines in I₃Cl₂SbCl₆.

Fig. 5. Zero-splitting loci of ³⁵Cl, ¹²⁷I, and ¹²¹Sb (ν_2) Zeeman lines in ICl₂SbCl₆. Cl₈ indicates the direction of the efg z axis calculated from the other crystal sites.

z axis at the bridging atom Cl_1 deviates from the Sb-Cl bond axis by ca. 6° , as shown in Fig. 4.

In ICl₂SbCl₆, forty zero-splitting loci for ³⁵Cl, ¹²⁷I, and 121Sb are expected to be observed from its crystal structure, which belongs to the tetragonal space group P4₁. 12) However, only thiry-one loci could be found. since some efg z axes are nearly parallel to the rf field. The Zeeman effect on the Cl atoms bonded to the Sb atom was observed at 233 K, and that for the other atoms was observed at room temperature. The zerosplitting loci relating to one of the crystal sites are shown in Fig. 5. The NQR parameters are listed in Table 2. The η -value for the Cl₁ atom at room temperature was 0.6 percent less than that at 233 K. The efg axes and the corresponding bond directions are compared in Table 4, and the significant efg axes are shown in Fig. 6. The coupling constant of the I atom is comparable to the value of 3066±37 MHz at 4.2 K obtained from the 127 I Mössbauer effect. 13)

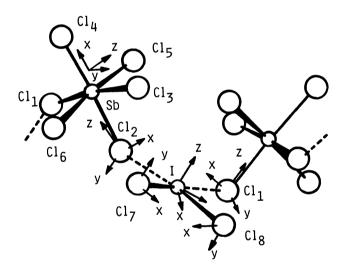


Fig. 6. Molecular shape of ICl₂SbCl₆.

Discussion

I₃Cl₂SbCl₆. The NQR spectrum is very similar to that reported previously for I₂ClSbCl₆,¹¹⁾ except for some parts. The sample prepared by the method of Merryman and Corbett¹¹⁾ exhibited the same spectrum as I₃Cl₂SbCl₆. This is verified by examining some samples. They reported that the absorption line due to ³⁵Cl was veiled by the very broad ¹²¹Sb line and the corresponding ³⁷Cl line. These lines could not be seen, although the NQR spectrum was examined at various temperatures. The other parts of the spectrum in I₃Cl₂SbCl₆ were identical with that reported for I₂ClSbCl₆, except that the resonance frequency for the I₂ atom was somewhat different.

The I-I-I bond in the centrosymmetric planar I₃Cl₂+ ion is completely linear. The I-I distance (2.906 Å) is considerably longer than a covalent I-I distance, 14) and is comparable to that in a symmetrical I_3 ion of $(C_6H_5)_4AsI_3$ (2.90 Å).²¹⁾ In the present study the bonding in the I₃ part of the I₃Cl₂+ ion was interpreted in terms of the 3c-4e bond. The atoms Cl1, Cl₄, I₁, and I₂ are almost coplanar. The bridging Cl₁...I₂ bond and the terminal Cl₄-I₂ bond make angles of 89.55° and 92.62°, respectively, to the I₁-I₂ bond. The Cl₁...I₂-Cl₄ bond is almost linear and is orthogonal to the I-I-I bond. The Cl₁...I₂ distance (2.94 Å) is considerably shorter than the sum of van der Waals radii (3.9 Å), although the Cl₄-I₂ distance (2.33 Å) is nearly equal to the sum of the covalent radii. The Cl₁···I₂-Cl₄ bond can therefore be regarded as an asymmetrical three-center bond.

Taking the Sb-Cl₁···I₂ angle of 109.75° into account, the orbitals on the bridging Cl atom can be approximated by sp³ hybridization. The orbital directed toward the Sb atom (ϕ_1) is nonequivalent to that directed toward the I₂ atom (ϕ_2) . The latter is

Table 4. Angles between efg Axes and Bond Angles in ICl₂SbCl₆

Bond	Cl ₁ -Sb	Cl ₂ -Sb	Cl ₃ -Sb	Cl ₄ -Sb	Cl ₅ -Sb	Cl ₆ -Sb	Cl ₇ -I
Cl ₂ -Sb	86.78°						
	$(81.6)^{a}$						
Cl ₃ -Sb	169.31	95.19					
	[172.4] ^{b)}	(91.3)					
Cl ₄ -Sb	96.71	175.38	91.36				
	(91.0)	[173.3]	(95.2)				
Cl ₅ -Sb	81.18	87.20	91.39	90.36			
	(88.9)	(86.5)	(92.4)	(93.1)			
Cl ₆ -Sb	84.45	89.03	91.60	91.67	176.34		
	(86.5)	(88.3)	(91.5)	(91.6)	[173.6]		
Cl ₇ -I	79.18	59.34	77.54	55.10	38.64	35.03	
	[72.7]	[55.1]	[78.4]	[57.4]	[40.3]	[34.2]	
Cl ₈ -I	51.49	44.4	41.46	49.46	80.12	79.41	93.41
	[46.9]	[53.3]	[39.7]	[46.9]	[79.7]	[79.8]	(92.5)
Sb z-axis	83.2	88.5	89.7	91.1	2.2	1.5	
x-axis	78.7	13.1	71.7	16.8	89.5	89.9	

a) The value in parentheses is the corresponding bond angle. b) The value in brackets was calculated from the atomic positions (Ref. 12).

presumed to be intermediate between ϕ_1 and the lone pair orbitals (ϕ_3 and ϕ_4). The orbital populations of ϕ_1 and ϕ_2 cannot be determined unequivocally. The populations, however, can be estimated by considering the following extremes: in one extreme ϕ_2 is equivalent to ϕ_1 (C_{2v} symmetry) and in another ϕ_2 is equivalent to the lone pair orbitals (C_{3v} symmetry). The hybrid orbitals belonging to the symmetry C_{2v} are expressed as follows;

$$\begin{aligned} \phi_1 &= s\psi_s + (1 - s^2)^{1/2}\psi_{p_z}, \\ \phi_2 &= s\psi_s + (1 - s^2)^{1/2}\{\psi_{p_z}\cos\theta + \psi_{p_x}\sin\theta\}, \\ \phi_3 &= \{(1 - 2s^2)/2\}^{1/2}\psi_s \\ &- s\{\psi_{p_z}\cos(\theta/2) + \psi_{p_x}\sin(\theta/2)\} + 2^{-1/2}\psi_{p_y}, \\ \phi_4 &= \{(1 - 2s^2)/2\}^{1/2}\psi_s \\ &- s\{\psi_{p_z}\cos(\theta/2) + \psi_{p_x}\sin(\theta/2)\} - 2^{-1/2}\psi_{p_y}, \end{aligned}$$
(1)

where $s^2=2^{-1}\{1-\cot(\theta/2)\}$ and θ is the angle between the bonds Sb-Cl₁ and Cl₁····I₂. The z axis is taken along the Sb-Cl₁ and the x axis in the plane SbCl₁I₂, although the efg z axis deviates slightly from the Sb-Cl₁ bond. If ϕ_1 and ϕ_2 are occupied by a and b electrons, respectively, then the coupling constant data may be analyzed by the equations;

$$(2-a)\cos^2(\theta/2) = \eta U_p/3,$$

 $(2-a) + (2-b)\{1-(3/2)\sin^2\theta\} = 2U_p\sin^2(\theta/2),$ (2)
where $U_p=(e^2Qq)_{\text{obs}}/(e^2Qq)_{\text{atom}}.$

The hybrid orbitals belonging to the symmetry C_{3v} are given by²²⁾

$$\begin{split} \phi_1 &= s_1 \psi_s + (1 - s_1^2)^{1/2} \psi_{p_2}, \\ \phi_2 &= s_2 \psi_s + (1 - s_2^2)^{1/2} (\psi_{p_2} \cos\theta + \psi_{p_x} \sin\theta), \\ \phi_3 &= s_2 \psi_s + (1 - s_2^2)^{1/2} \{ \psi_{p_2} \cos\theta - (1/2) \psi_{p_x} \sin\theta \\ &+ (3^{1/2}/2) \psi_{p_y} \sin\theta \}, \end{split}$$

$$\phi_4 &= s_2 \psi_s + (1 - s_2^2)^{1/2} \{ \psi_{p_2} \cos\theta - (1/2) \psi_{p_x} \sin\theta \\ &- (3^{1/2}/2) \psi_{p_y} \sin\theta \}, \end{split}$$

where $s_1^2=2\cot^2\theta$ and $s_2^2=1-2/(3\sin^2\theta)$, and there-

fore

$$2 - b = \eta U_{p},$$

$$\{(2 - a) - (2 - b)/3\}(1 - 2\cot^{2}\theta) = U_{p}.$$
(4)

Using the experimental bond angle, the values of a=1.46 and b=1.84 are obtained for the symmetry C_{2v} , and those of a=1.45 and b=1.84, for the symmetry C_{3v} . Even when the deviation of the z axis on the Cl_1 atom from the Sb-Cl₁ axis is taken into account, the variations in the populations of ϕ_1 and ϕ_2 are less than 0.5 percent.

Each I atom in the $I_3Cl_2^+$ ion is positively charged. The efg components can be written in terms of the population N_i on the i-th p orbital as follows;

$$q_{ii} = [N_i - (N_j - N_k)/2]q_{atom}(1 + \varepsilon)^{\rho},$$

 $i, j, k = x, y, z$ (5)

where ρ is the charge at the I atom and ε is the correction parameter for the ionization of the I atom. The value of ε =0.12 was used for the I atom.²³⁾ If only the p_z and p_x orbitals on the I atom participate on bonding and the p_y orbital is completely filled, the charge on the I atom is approximated by

$$\rho = [U_{p}(1+\eta) - 1]/[U_{p}\varepsilon(1+\eta) + 1]. \tag{6}$$

The populations deduced from Eqs. 1—6 are listed in Table 5.

The electron numbers for the I_2 – I_1 – I_2 and Cl_1 ... I_2 – Cl_4 bonds are 3.83 and 3.88, respectively, assuming that the s character for the bonding orbital of the Cl_4 atom is 0.15. These values are close to the expected value 4, notwithstanding neglect of the s and d character of the central I atom, and accordingly these bonds can be explained essentially in terms of the 3c-4e bond. The total charges of the I_1 and I_2 atoms are estimated to be ± 0.30 and ± 0.66 , respectively. These values are comparable to the values of ± 0.2 and ± 0.5 which were calculated by using the relationship between bond length and bond order. ± 1.0

Table 5. Electronic Distributions of Polyhalogen Cations and Surrounding Chlorine Atoms in I₃Cl₂SbCl₆ and ICl₂SbCl₆

Compound	Atom	$N_{x}^{a)}$	$N_{\mathrm{y}}^{\mathrm{a}\mathrm{)}}$	$N_z^{a)}$	$N_{\sigma}{}^{ extsf{b})}$
I ₃ Cl ₂ SbCl ₆	Cl_1	1.90	(2)	1.58	1.45 < a < 1.46 (Sb) b = 1.84 (I ₂)
	Cl_4	(2)	(2)	1.20	1.18
	I_1	1.93	(2)	0.77	
	I_2	1.53	(2)	0.81	
ICl ₂ SbCl ₆	Cl_1	1.87	(2)	1.58	1.48 < a < 1.53 (Sb)
	Cl_2	1.88	(2)	1.58	1.78 > b > 1.75 (I) 1.42 < a < 1.44 (Sb) b = 1.81 (I)
	Cl_7	1.93	(2)	1.27	1.14
	Cl ₈	1.93	(2)	1.25	1.11
	I	0.95	0.84	(2)	

a) The value in the parentheses is assumed to be 2. b) The population in the bonding atomic orbital. The symbols in parentheses indicate the atom toward which the hybrid orbital directs.

ICl₂SbCl₆. According to X-ray analysis,¹²⁾ the atoms I, Cl₁, Cl₂, Cl₇, and Cl₈ are almost coplanar. The z axis for the I atom is normal to this plane, and the x axis almost coincides with the bisector of the angle \angle Cl₇ICl₈. The z axes at the Cl₁ and Cl₂ atoms are nearly parallel to the corresponding Sb-Cl bond (see Table 4). The z axis at each bridging atom lies in the Sb-Cl···I plane. According to the ¹²⁷I Mössbauer effect, the value e^2Qqh^{-1} is positive.¹³⁾ This is in agreement with the results of the Zeeman effect of NQR.

The angles ∠SbCl₇I and ∠SbCl₈I are 116.8° and 114.8°, respectively. The valence orbitals at these bridging Cl atoms can be approximated by sp² hybridization. The wave functions can be written as follows:

$$\phi_{1} = s_{1}\psi_{s} + s_{2}\psi_{p_{z}},
\phi_{2} = (1/2)s_{2}\psi_{s} + 2^{-1/2}s_{1}\psi_{p_{z}} + 2^{-1/2}\psi_{p_{x}},
\phi_{3} = (1/2)s_{2}\psi_{s} + 2^{-1/2}s_{1}\psi_{p_{z}} + 2^{-1/2}\psi_{p_{x}},
\phi_{4} = \psi_{p_{y}},$$
(7)

where $s_1=\cot\theta$ and $s_2=(1-\cot^2\theta)^{1/2}$. If the populations in ϕ_1 and ϕ_2 are set equal to a and b, respectively, the relations between the NQR parameters and the orbital populations are given by

$$2 - b = (4/3)\eta U_{\rm p},$$

$$\{(2 - a) - (2 - b)/2\}(1 - \cot^2\theta) = (1 - \eta/3)U_{\rm p}.$$
 (8)

The ranges of the orbital populations can be estimated in a similar manner as above. These are listed in Table 5. According to X-ray analysis, ¹²⁾ the distances of the bonds Sb-Cl₁, Sb-Cl₂, Cl₁...I, and Cl₂...I are 2.33, 2.29, 2.85, and 3.00 Å, respectively. The values of a and b correlate to the corresponding bond distance, as can be seen in Table 5. The populations of the valence p orbitals were calculated by assuming N_z =2. The net charge on the I atom is estimated to be +1.21. This is comparable to the value (+1.26) for I₂Cl₆¹⁰⁾ and that (+1.13) calculated for the isolated ICl₂+ ion.²⁴⁾

If sp³ hybridization with C_{2v} symmetry is adopted to the I atom, the interorbital angle is calculated to be 92.6° by using the relation $\eta=-3\cos\theta.^{25}$ This value is in good agreement with the crystallographically known angle of $\angle \text{Cl}_7\text{ICl}_8$ (92.5°). The shortness of the distances I...Cl₁ and I...Cl₂ suggests that the interaction between the I atom and the surrounding Cl atoms cannot be described by simple sp² hybrid orbitals at the I atom.

The atomic arrangement around the I atom can be represented as a resonance $ICl_2+SbCl_6-\longleftrightarrow ICl_4-SbCl_4+$, and is similar to that in the $ICl_4-ion.^{12}$ The bonding in the ICl_4-ion and I_2Cl_6 could be satisfactorily explained by considering only the valence p orbitals.^{3,10)} If this is the case for the ICl_4 part in ICl_2SbCl_6 , the total number of electrons that take part in σ -bonding is 8. Examination of Table 5

reveals that the total electron number is about 7.6. Although this is somewhat smaller than the expected value, it is considered that the I atom in this complex presents essentially only the p orbitals for bonding, as well as the $I_3Cl_2^+$ ion. The comparatively large η -values for the terminal Cl atoms may be ascribed to the π -interaction of the p_x orbital at each Cl atom with the p_x and p_y orbitals at the I atom.

The η -values of ¹²¹Sb in I₃Cl₂SbCl₆ and ICl₂SbCl₆ are significantly large. There is no experimental atomic coupling constant for ¹²¹Sb. If the calculated value of 1300 or 945 MHz is used for $(e^2Qqh^{-1})_{atom}$, ^{26,27)} the imbalance in the orbital population is estimated to be at most 0.02 to 0.03. Hence, a slight imbalance in the population of the p orbitals brings about the large η -value. This is ascribable to the large ionic character of the Sb atom.

References

- 1) C. D. Cornwell and R. S. Yamasaki, J. Chem. Phys., 27, 1060 (1957).
- 2) Y. Kurita, D. Nakamura, and N. Hayakawa, Nippon Kagaku Zasshi, 79, 1093 (1958).
- 3) R. S. Yamasaki and C. D. Cornwell, J. Chem. Phys., 30, 1265 (1959).
- 4) A. Sasane, D. Nakamura, and M. Kubo, J. Phys. Chem., 71, 3249 (1967).
- 5) G. L. Breneman and R. D. Willet, *J Phys. Chem.*, **71**, 3684 (1967).
- 6) G. A. Bowmaker and S. Hocobian, Aust. J. Chem., 21, 551 (1968).
- 7) Y. Kume and D. Nakamura, *J Magn. Reson.*, **21**, 235 (1976).
- 8) T. Okuda, I. Tomoyasu, K. Yamada, and H. Negita, Bull. Chem. Soc. Ipn., 50, 1695 (1977).
- 9) D. J. Merryman, J. D. Corbett, and P. A. Edwards, *Inorg. Chem.*, 14 428 (1975).
- 10) J. C. Evans and G. Y-S. Lo, *Inorg. Chem.*, **6**, 836 (1967).
- 11) D. J. Merryman and J. D. Cornwell, *Inorg. Chem.*, **13**, 1258 (1974).
- 12) C. G. Vonk and E. H. Wiebenga, Acta Crystallogr., 12, 859 (1959).
- 13) T. Birchall and R. D. Myers, *Inorg. Chem.*, **20**, 2207 (1981).
- 14) T. Birchall and R. D. Myers, *Inorg. Chem.*, 21, 213 (1982).
- 15) T. Birchall and R. D. Myers, *Inorg. Chem.*, **22**, 1751 (1983).
- 16) J. Passmore, G. Sutherland, and P. S. White, *Inorg. Chem.*, **20**, 2169 (1981).
- 17) J. Shamir and M. Lustig, *Inorg. Chem.*, 12, 1108 (1973).
- 18) C. G. Vonk and E. H. Wiebenga, Recl. Trav. Chim. Pays-Bas, 78, 913 (1959).
- 19) J. Rupp-Bensadon and E. A. C. Lucken, J. Chem. Soc., Dalton Trans., 1983, 19.
- 20) M. Mishima, J. Sci. Hiroshima Univ., A46, 41 (1982).
- 21) J. C. Slater, Acta Crystallogr., 12, 197 (1959).
- 22) T. P. Das and E. L. Hahn, "Nuclear Quadrupole

Resonance Spectroscopy," Academic Press, New York, London (1958), Chap. 3, p. 151.

- 23) J. P. Dailey and C. H. Townes, *J. Chem. Phys.*, **23**, 118 (1955).
- 24) E. H. Wiebanga and D. Kracht, *Inorg. Chem.*, **8**, 738 (1969).
- 25) P. A. Casabella, P. J. Bray, and R. G. Barnes, J. Chem.

Phys., 30, 1393 (1959).

26) G. A. Jeffrey and T. Sakurai, *Progr. Solid State Chem.*, 1, 380 (1964).

27) E. A. C. Lucken, "Nuclear Quadrupole Coupling Constants," Academic Press, London, New York (1969), Chap. 12, p. 276.